MP2I: Colle 21 (24/03/25 au 28/03/25)

Reprise du programme précédent (développements limités) plus

ESPACES VECTORIELS DE DIMENSION FINIE

- ► Espaces de dimension finie. Existence de bases. Notion de dimension. Cardinal des familles libres/génératrices.
- ▶ Théorème de la base incomplète, théorème de la base extraite.
- ▶ Dimension des espaces usuels : \mathbf{K}^n , $\mathbf{K}_n[X]$, $\mathcal{M}_{n,p}(\mathbf{K})$, $\mathcal{L}(E,F)$
- ▶ Dimension d'un sous-espace vectoriel. Dimension d'une somme. F et G sont en somme directe si et seulement si dim F + dim G = dim(F + G). Formule de Grassmann.
- ► Existence de supplémentaires en dimension finie. Caractérisations des sous-espaces supplémentaires en dimension finie.
- ▶ dim $(\sum_{i=1}^{n} F_i)$ $\leq \sum_{i=1}^{n} F_i$, avec égalité si et seulement si les F_i sont en somme directe (preuve non exigible).
- ▶ Applications linéaires en dimension finie. Une application linéaire est uniquement déterminée par l'image d'une base. Dimension de $\mathcal{L}(E, F)$.
- ▶ Théorème du rang. Caractérisation des isomorphismes en dimension finie. Applications linéaires de rang fini. Si $f: E \to F$ (avec E, F de dim finie), alors $\operatorname{rg} f \leq \min(\dim E, \dim F)$.
- ► Formes linéaires et hyperplans (défini comme noyau d'une forme linéaire non nulle). Un sev de E (de dimension finie ou non) est un hyperplan ssi il possède un supplémentaire de dimension 1. Deux formes linéaires non nulles définissent le même hyperplan ssi elles sont colinéaires.
- ▶ Une intersection de p hyperplans est de dimension supérieure à dim E p. Tout sev de dimension p est intersection de dim E p hyperplans.