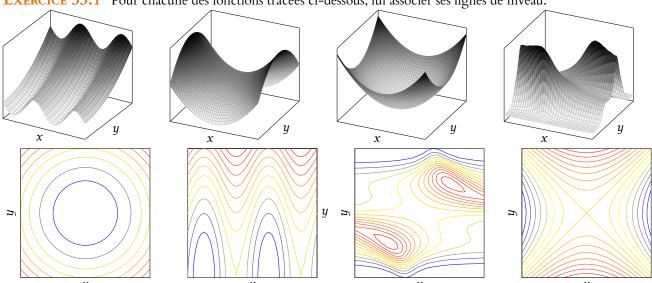
TD 33: Fonctions de deux variables

Exercice 33.1 Pour chacune des fonctions tracées ci-dessous, lui associer ses lignes de niveau.



► Topologie de R²

EXERCICE 33.2 Déterminer si les ensembles suivants sont ouverts, fermés, bornés. On pourra s'appuyer d'un dessin lorsque c'est possible.

- 1. $A = \{(x, y) \in \mathbb{R}^2 \mid x^2 + y^2 \le 3\}$ 2. $B = \{(x, y) \in \mathbb{R}^2 \mid |x| \ne 1 \text{ et } |y| \ne 1\}$
- 3. $C = \{(x, y) \in \mathbb{R}^2 \mid |x + 2y| = 1 \text{ ou } |y + 2x| \ge 4\}.$

Exercice 33.3 Montrer qu'une boule fermée est un fermé de \mathbb{R}^2 .

PD

► Fonctions continues

Exercice 33.4 Montrer que la fonction $(x, y) \mapsto \max(x, y)$ est continue sur \mathbb{R}^2 .

PD

EXERCICE 33.5 Soit
$$f : \mathbb{R}^2 \to \mathbb{R}$$
 définie par $f(x, y) = \begin{cases} \frac{1}{2}x^2 + y^2 - 1 & \text{si } x^2 + y^2 > 1 \\ -\frac{1}{2}x^2 & \text{sinon} \end{cases}$.

AD

Montrer que f est continue sur \mathbb{R}^2 .

EXERCICE 33.6 Justifier que si $f: \mathbb{R}^2 \to \mathbb{R}$ est continue, alors pour tout $(a_1, a_2) \in \mathbb{R}^2$, $f_1: t \mapsto f(t, a_2)$ et $f_2: t \mapsto f(a_1, t)$ sont continues respectivement en a_1 et a_2 .

AD

En considérant la fonction $f:(x,y)\mapsto\begin{cases} \frac{xy}{x^2+y^2} & \text{si } (x,y)\neq (0,0)\\ 0 & \text{si } (x,y)=(0,0) \end{cases}$, montrer que la réciproque est fausse.

lacktriangle Dérivées partielles, fonctions de classe \mathscr{C}^1

Exercice 33.7 Justifier que les fonctions suivantes sont de classe \mathscr{C}^1 sur un ouvert que l'on précisera, et déterminer leurs dérivées partielles.

F

- 1. $f:(x,y) \mapsto 3x^2y^2 + 2xy + xe^y$
- 2. $g:(x,y) \mapsto \sqrt{x^2 y^2}e^x$
- 3. $h: (x, y) \mapsto \ln(2xy)\sin(x^2 + y)$.

EXERCICE 33.8 Soit $\varphi \in \mathcal{C}(\mathbf{R}, \mathbf{R})$. On pose alors $f(x, y) = \int_{x^2}^{xy} \varphi(t) dt$.

Montrer que f est \mathscr{C}^1 sur \mathbf{R}^2 et déterminer ses dérivées partielles.

Exercice 33.9

PD

- 1. Montrer que si $f: \mathcal{O} \to \mathbf{R}$ est une fonction constante sur un ouvert \mathcal{O} , alors et f est \mathcal{C}^1 et pour tout $x \in \mathcal{O}$, $\nabla f(x) = 0_{\mathbf{R}^2}$.
- 2. Donner un exemple de fonction f de classe \mathscr{C}^1 sur un ouvert de \mathbf{R}^2 , non constante mais dont le gradient est partout nul.

EXERCICE 33.10 Soit $f \in \mathcal{C}^1(\mathbb{R}^2, \mathbb{R})$ telle que $\forall (x, y) \in \mathbb{R}^2$, $\forall t \in \mathbb{R}_+^*$, f(tx, ty) = tf(x, y).

AD

Pour tout $u \in \mathbb{R}^2$, calculer la dérivée de f en (0,0) selon le vecteur u, et en déduire que f est linéaire.

EXERCICE 33.11 Soit $f:(x,y)\mapsto\begin{cases} \frac{y^2}{x} & \text{si } x\neq 0\\ y & \text{si } x=0 \end{cases}$. Montrer que f admet des dérivées partielles en (0,0) mais n'est pas continue en (0,0).

AD

EXERCICE 33.12 Gradient en coordonnées polaires

Soit $f : \mathbb{R}^2 \setminus \{(0,0)\} \to \mathbb{R}$ une fonction de classe \mathscr{C}^1 .

PD

On définit alors une fonction $F : \mathbb{R}_+^* \times [0, 2\pi[$ en posant $F(r, \theta) = f(r\cos(\theta), r\sin(\theta))$.

Montrer que F est de classe \mathscr{C}^1 et exprimer pour tout $(r, \theta) \in \mathbf{R}_+^* \times [0, 2\pi[$, exprimer $\frac{\partial f}{\partial x}(r\cos(\theta), r\sin(\theta))$ et $\frac{\partial f}{\partial y}(r\cos(\theta), r\sin(\theta))$

en fonction de $\frac{\partial F}{\partial r}(r,\theta)$ et $\frac{\partial F}{\partial \theta}(r,\theta)$.

On pourra utiliser les formules de Cramer rencontrées pour les systèmes 2×2 .

EXERCICE 33.13 (Oral HEC ECS)

D

Soit f une fonction de $\mathbf R$ dans $\mathbf R$, de classe $\mathscr C^1$. On définit la fonction g de $\mathbf R^2$ dans $\mathbf R$ par :

$$\forall (x,y) \in \mathbf{R}^2, g(x,y) = \begin{cases} \frac{1}{y-x} \int_x^y f(t) \, dt & \text{si } x \neq y \\ f(x) & \text{si } x = y \end{cases}$$

- 1. Soit $D = \{(x, y) \in \mathbb{R}^2 : x \neq y\}$. Justifier que D est ouvert. Montrer que g est de classe \mathscr{C}^1 sur D et calculer ses dérivées partielles sur D.
- 2. Soit $a \in \mathbb{R}$. Montrer que g admet des dérivées partielles en (a, a) et les exprimer en fonction de f'(a), où f' désigne la dérivée de f.
- 3. Soit $a \in \mathbf{R}$ et $(x, y) \in D$.
 - (a) Montrer que : $\frac{\partial g}{\partial x}(x,y) \frac{\partial g}{\partial x}(a,a) = \frac{1}{(y-x)^2} \int_x^y (y-t) \left(f'(t) f'(a)\right) dt$.
 - (b) En déduire que $: \left| \frac{\partial g}{\partial x}(x,y) \frac{\partial g}{\partial x}(a,a) \right| \le \frac{1}{2} \sup_{t \in S} |f'(t) f'(a)|$, où S désigne le segment d'extrémités x et y.
- 4. Déduire des questions précédentes que q est de classe \mathscr{C}^1 sur \mathbf{R}^2 .

Exercice 33.14 Fonctions 2-hölderiennes (Oral Centrale)

AD

Soit $f \in \mathcal{C}^1(\mathbf{R}^2, \mathbf{R})$. On suppose que $\forall (x, y) \in (\mathbf{R}^2)^2$, $|f(x) - f(y)| \leq ||x - y||^2$. Montrer que f est constante.

 $\in \mathbb{R}^3,$

EXERCICE 33.15 Soit $f \in \mathcal{C}^1(\mathbf{R}^2, \mathbf{R})$. Montrer que $\frac{\partial f}{\partial x} + \frac{\partial f}{\partial y} = 0$ si et seulement si pour tout $(x, y, t) \in \mathbf{R}^3$, f(x+t, y+t) = f(x, y).

F

EXERCICE 33.16 Soit $f \in \mathcal{C}^1(\mathbb{R}^2, \mathbb{R})$. Soit alors g la fonction définie par $\forall (u, v) \in \mathbb{R}^2$, $g(u, v) = f(u^2 + v^2, uv)$. Justifier que g est de classe \mathcal{C}^1 et déterminer les dérivées partielles de g, notées $\frac{\partial g}{\partial u}$ et $\frac{\partial g}{\partial v}$ en fonction de celles de f.

► Exemples d'équations au dérivées partielles

EXERCICE 33.17 Déterminer les fonctions de classe \mathscr{C}^1 sur \mathbb{R}^2 solutions de

AD

$$\frac{\partial f}{\partial x}(x,y) + xyf(x,y) = 0.$$

EXERCICE 33.18 Déterminer les fonctions $f: \mathbb{R}^2 \to \mathbb{R}$, de classe \mathscr{C}^1 , et solution de $\frac{\partial f}{\partial x} + \frac{\partial f}{\partial u} = f$.

AD

On pourra à cet effet utiliser le changement de variable $\begin{cases} u = x \\ v = x - y \end{cases}$

MP2I Lycée Champollion 2024-2025m

► Extrema des fonctions de deux variables

Exercice 33.19

PD

- 1. Déterminer les extrema de $t \mapsto t^{\ln t}$ sur \mathbb{R}_{+}^{*} .
- 2. En déduire les extrema (locaux ou globaux) de $f(x, y) = x^{\ln x} + y^{\ln y} \sin (10, +\infty)^2$.

Exercice 33.20 Étude d'un extremum par variation de fonctions

Soit f la fonction définie sur \mathbb{R}^2 par $f(x,y) = x^4 + y^4 - 4xy$.

- 1. Montrer que f n'admet pas de maximum.
- 2. On se propose de montrer que f possède un minimum.
 - (a) En considérant f(-x, -y), montrer qu'on peut se restreindre à $y \ge 0$.
 - (b) Pour $y \ge 0$ fixé, montrer que la fonction $x \mapsto f(x, y)$ admet un minimum noté g(y).
 - (c) Étudier les variations de $y \mapsto g(y)$ et en déduire que f admet un minimum, et préciser le(s) point(s) où ce minimum est atteint.

Exercice 33.21 Soit $f: \mathbb{R}^2 \to \mathbb{R}$ une fonction \mathscr{C}^1 convexe, c'est-à-dire telle que pour tout $(a, b) \in \mathbb{R}^2$ et pour tout $\lambda \in [0, 1]$,

$$f((1-\lambda)a + \lambda b) \le (1-\lambda)f(a) + \lambda f(b).$$

Montrer que si $a \in \mathbb{R}^2$ est un point critique de f, alors f admet un minimum global en a.

EXERCICE 33.22 Soit $\mathfrak{D} = \{(x,y) \in \mathbb{R}^2 : x^2 + y^2 \le 1\}$ et soit f la fonction définie sur \mathfrak{D} par $f(x,y) = x^3 - 3x(1+y^2)$.

AD

- 1. Justifier que f admet un minimum m et un maximum M sur \mathfrak{D} .
- 2. Montrer que sur $B_o(0,1)$, f n'admet pas de point critique. Que peut-on en déduire à propos de m et M?
- 3. En étudiant la fonction $t \mapsto f(\cos t, \sin t)$, déterminer les valeurs de m et M.

EXERCICE 33.23 Déterminer les extrema locaux de $f(x, y) = e^{x \sin(y)}$.

AD

Exercice 33.24 Déterminer les extrema locaux de $f(x, y) = x^4 + y^3 - 3y - 2$.

AD

EXERCICE 33.25 Soit f la fonction définie sur $[0,1] \times [0,2]$ par $f(x,y) = xy^2 - xy + x^3y$. Montrer que f possède un maximum et un minimum, et les déterminer.

_

EXERCICE 33.26 Soit $f : \mathbb{R}^2 \setminus \{(0,0)\} \to \mathbb{R}$ définie par $f(x,y) = (x^2 + y^2)^x$. Déterminer les extrema locaux et globaux de f.

ΔD