TD 32 : Groupe symétrique et déterminant

▶ Groupe symétrique

Exercice 32.1 Décomposer les permutations suivantes en produits de cycles à supports disjoints, puis en produit de transpositions. En déduire leur signature

$$\sigma_1 = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 2 & 6 & 5 & 4 & 1 & 3 \end{pmatrix}, \ \sigma_2 = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\ 3 & 10 & 6 & 4 & 2 & 1 & 7 & 5 & 8 & 9 \end{pmatrix}$$

EXERCICE 32.2 Un résultat annoncé en cours

PD

Soient $(i, j, k, \ell) \in [[1, n]]^2$, avec $i \neq j$ et $k \neq \ell$.

Montrer qu'il existe $\sigma \in \mathfrak{S}_n$ tel que $\sigma(i) = k$ et $\sigma(j) = \ell$.

Rappelons que ce résultat nous a permis de prouver que si τ_1 et τ_2 sont deux transpositions, alors il existe $\sigma \in \mathfrak{S}_n$ tel que $\tau_1 = \sigma \tau_2 \sigma^{-1}$.

PD

Exercice 32.3 Montrer par récurrence sur n que toute permutation de \mathfrak{S}_n est produit d'au plus n-1 transpositions. Décomposer $\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 4 & 1 & 5 & 2 \end{pmatrix}$ en produit d'au plus 4 transpositions.

EXERCICE 32.4 Groupe alterné

Soit $n \ge 2$. Montrer que $\mathfrak{A}_n = \{ \sigma \in \mathfrak{S}_n \mid \varepsilon(\sigma) = 1 \}$ est un sous-groupe de \mathfrak{S}_n , de cardinal $\frac{n!}{2}$.

EXERCICE 32.5 D'autres générateurs du groupe symétrique

- 1. Monter que pour $1 \le i < j \le n$, $(i \quad j) = (i \quad i+1 \quad \dots \quad j-1 \quad j) (j-1 \quad j-2 \quad \dots \quad i)$.
- 2. Montrer que tout élément de \mathfrak{S}_n peut s'écrire comme produit de transpositions de la forme $(i \ i+1), i \in [1, n-1]$.
- 3. En déduire que tout élément de \mathfrak{S}_n est produit de transpositions de la forme $(1 \quad i), 2 \le i \le n$.

EXERCICE 32.6 (Oral Mines MP)

AD

Pour $\sigma \in \mathfrak{S}_n$, on note $f(\sigma) = \sum_{k=1}^n k \sigma(k)$. On note alors $m = \min_{\sigma \in \mathfrak{S}_n} f(\sigma)$ et $M = \max_{\sigma \in \mathfrak{S}_n} f(\sigma)$.

- 1. À l'aide de l'inégalité de Cauchy-Schwarz, montrer que $M = \frac{n(n+1)(2n+1)}{6}$.
- 2. Montrer que si $\sigma \in \mathfrak{S}_n$ n'est pas décroissante, alors il existe une transposition τ telle que $f(\sigma \circ \tau) < f(\sigma)$. En déduire la valeur de *m*.

Exercice 32.7 Minoration de la fonction de Landau (Oral ENS Ulm 2019)

TD

Pour $n \in \mathbf{N}^*$, on note $f(n) = \max_{k \in \mathbb{N}} \min\{k \ge 1 \mid \sigma^k = \mathrm{id}\}$.

Prouver que pour tout $k \in \mathbb{N}$, $n^k = o(f(n))$.

Formes multilinéaires

EXERCICE 32.8 Soit $A \in \mathcal{M}_n(K)$. Montrer que $\varphi : (X,Y) \mapsto X^{\mathsf{T}}AY$ est une forme bilinéaire sur $\mathcal{M}_{n,1}(K)$.

Prouver qu'elle est alternée si A est antisymétrique.

Formes linéaires alternées

EXERCICE 32.9 Soit $\varphi: E^2 \to \mathbf{K}$ une forme bilinéaire alternée sur un espace vectoriel E.

Pour $(x, y) \in E^2$, exprimer $\varphi(x + y, x - y)$ en fonction de $\varphi(x, y)$.

Exercice 32.10 Soit *E* un espace vectoriel de dimension *n*, et soit \mathcal{B} une base de *E*. Soit également $f \in \mathcal{L}(E)$. Montrer que pour tout $(x_1, ..., x_n) \in E^n$,

$$\sum_{k=1}^{n} \det_{\mathcal{B}}(x_1,\ldots,x_{k-1},f(x_k),x_{k+1},\ldots x_n) = \operatorname{tr}(f) \det_{\mathcal{B}}(x_1,\ldots,x_n).$$

EXERCICE 32.11 Dimension de l'espace des formes k-linéaires alternées (Oral ENS)

TD

Soit E un K-espace vectoriel de dimension n, et soit $k \in \mathbb{N}^*$. Déterminer la dimension de l'espace $\mathcal{A}_k(E)$ des formes k-linéaires alternées sur E.

▶ Déterminants théoriques

EXERCICE 32.12 Soit $A \in \mathcal{M}_n(\mathbb{R})$ une matrice antisymétrique, avec n impair. Montrer que det A = 0. Est-ce encore vrai si n est pair?

PD

EXERCICE 32.13 Soit E un R-espace vectoriel de dimension impaire. Montrer qu'il n'existe pas de $f \in \mathcal{L}(E)$ tel que

PD

Exercice 32.14 Montrer que le volume d'un parallélépipède de R³ dont les sommets sont dans Z est un entier.

EXERCICE 32.15 Formules de Cramer

AD

Soit $A \in GL_n(\mathbf{K})$, de sorte que pour $B \in \mathcal{M}_{n,1}(\mathbf{K})$, le système AX = B possède une unique solution, que l'on notera $X = (x_i)_{1 \le i \le n} \in \mathcal{M}_{n,1}(\mathbf{K})$. Pour $i \in [1, n]$, on note A_i la matrice dont toutes les colonnes sont celles de A, sauf la $i^{\text{ème}}$, qui est égale à B.

Prouver que $\forall i \in [[1, n]], x_i = \frac{\det(A_i)}{\det(A)}$.

Cas particulier: donner l'unique solution de $\begin{cases} ax + by = e \\ cx + dy = f \end{cases}$ lorsque $ad - bc \neq 0$.

Exercice 32.16 Soit $A = (a_{i,j})_{1 \le i,j \le n} \in \mathcal{M}_n(\mathbf{K})$, et soit $B = ((-1)^{i+j} a_{i,j})_{1 \le i,j \le n}$. Comparer det A et det B.

EXERCICE 32.17 Soient $(A, B, C, D) \in \mathcal{M}_n(\mathbf{R})^4$, telles que CD = DC.

1. Calculer le produit par blocs $\begin{pmatrix} A & B \\ C & D \end{pmatrix} \begin{pmatrix} D & 0_n \\ -C & I_n \end{pmatrix}$.

2. Dans le cas où D est inversible, prouver que $\det \begin{pmatrix} A & B \\ C & D \end{pmatrix} = \det(AD - BC)$.

3. Prouver que le résultat reste valable lorsque D n'est plus inversible. On pourra à cet effet étudier la fonction $t \mapsto \det(D + tI_n)$.

D

EXERCICE 32.18 Un classique: deux matrices réelles semblables sur C sont semblables sur R

Soient $A, B \in \mathcal{M}_n(\mathbf{R})$, semblables en tant que matrices de $\mathcal{M}_n(\mathbf{C})$, c'est-à-dire telles qu'il existe $P \in GL_n(\mathbf{C})$ telle que $A = PBP^{-1}.$

On note alors $P = P_1 + iP_2$, avec $P_1, P_2 \in \mathcal{M}_n(\mathbf{R})$.

En considérant l'application $t \mapsto \det(P_1 + tP_2)$, prouver que A et B sont semblables sur $\mathcal{M}_n(\mathbf{R})$.

TD

EXERCICE 32.19 (Oral X 2024)

Soit $A \in \mathcal{M}_n(\mathbf{R})$.

1. On suppose A inversible. Montrer qu'en modifiant un seul coefficient de A, on peut la rendre non inversible.

2. On suppose A non inversible. Quel est le nombre minimal de coefficients de A qu'il faut modifier pour la rendre inversible?

Calcul de déterminants

Exercice 32.20 Calculer les déterminants suivants, par les méthodes de votre choix, en en donnant une forme la plus factorisée possible. Ici, a, b et c sont des scalaires.

$$\begin{vmatrix} 1 & 0 & -1 & 2 \\ -4 & 1 & 3 & -4 \\ 0 & 1 & 0 & 1 \\ 1 & 0 & -1 & 4 \end{vmatrix}, \begin{vmatrix} 0 & 1 & 1 & 3 \\ 2 & 0 & 1 & -1 \\ 3 & 1 & 1 & 4 \\ 1 & 0 & 2 & 3 \end{vmatrix}, \begin{vmatrix} 0 & a & b \\ a & 0 & c \\ b & c & 0 \end{vmatrix}, \begin{vmatrix} 1 & 1 & 1 \\ a & b & c \\ a^2 & b^2 & c^2 \end{vmatrix}, \begin{vmatrix} a & c & c & b \\ c & a & b & c \\ b & c & c & a \end{vmatrix}$$

EXERCICE 32.21 Pour quelles valeurs de $\lambda \in \mathbb{C}$ la famille $(8, -1, 2 - \lambda)$, $(5, 1 - \lambda, 1)$, $(2 + \lambda, -2, 1)$ est-elle une base de

EXERCICE 32.22 Oh la grosse astuce!

PD

Soient
$$a_1, \ldots, a_n, h$$
 des réels. Calculer $\Delta = \begin{vmatrix} \cos(a_1) & \cos(a_2) & \ldots & \cos(a_n) \\ \cos(a_1+h) & \cos(a_2+h) & \ldots & \cos(a_n+h) \end{vmatrix}$

$$\vdots & \vdots & \vdots & \vdots \\ \cos(a_1+(n-1)h) & \cos(a_2+(n-1)h) & \ldots & \cos(a_n+(n-1)h) \end{vmatrix}$$

MP2I Lycée Champollion 2024-2025 **Exercice 32.23** Soit f l'endomorphisme de $\mathcal{M}_n(\mathbf{K})$ défini par $f(M) = M^{\mathsf{T}}$. Calculer $\operatorname{rg}(f)$, $\operatorname{tr}(f)$ et $\operatorname{det}(f)$.

EXERCICE 32.24 Retour sur les déterminants par blocs

Soit
$$A \in \mathcal{M}_n(\mathbf{K})$$
, $B \in \mathcal{M}_{n,p}(\mathbf{K})$ et $C \in \mathcal{M}_p(\mathbf{K})$. Soit alors $M = \begin{pmatrix} A & B \\ 0_{p,n} & C \end{pmatrix} \in \mathcal{M}_{n+p}(\mathbf{K})$.

- 1. Montrer que $M = \begin{pmatrix} I_n & B \\ 0 & C \end{pmatrix} \begin{pmatrix} A & 0 \\ 0 & I_p \end{pmatrix}$.
- 2. Retrouver alors l'expression de det(M) vue en cours.

EXERCICE 32.25 Pour
$$x \in \mathbb{C}$$
, on note $D(x) = \begin{vmatrix} 1 & x & x^2 & x^3 \\ 1 & 1 & 1 & 1 \\ 1 & 2 & 3 & 4 \\ 1^2 & 2^2 & 3^2 & 4^2 \end{vmatrix}$.

Montrer que D est une fonction polynomiale, divisible par $x \mapsto (x-1)^3$, dont on donnera une forme factorisée.

EXERCICE 32.26 Soient
$$A \in \mathcal{M}_{n,p}(\mathbf{K})$$
 et $B \in \mathcal{M}_{p,n}(\mathbf{K})$, avec $n > p$. Calculer $\det(AB)$.

Exercice 32.27 Calculer par récurrence les déterminants suivants, où a_1, \ldots, a_n sont des scalaires :

$$\begin{vmatrix} 0 & 1 & \dots & 1 \\ -1 & 0 & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ \vdots & & \ddots & \ddots & 1 \\ -1 & \dots & \dots & -1 & 0 \end{vmatrix}, \begin{vmatrix} a_1 & a_1 & a_1 & \dots & a_1 \\ a_1 & a_2 & a_2 & \dots & a_2 \\ a_1 & a_2 & a_3 & \dots & a_3 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ a_1 & a_2 & a_3 & \dots & a_n \end{vmatrix}, \begin{vmatrix} -2 & 1 & 0 & \dots & 0 \\ 1 & -2 & 1 & \ddots & \vdots \\ 0 & 1 & -2 & \ddots & \vdots \\ \vdots & \vdots & \ddots & \ddots & 1 \\ 0 & 0 & \dots & 1 & -2 \end{vmatrix}$$

Exercice 32.28 Polynôme caractéristique

Pour $A \in \mathcal{M}_n(\mathbf{K})$, on note $\chi_A : \begin{vmatrix} \mathbf{K} & \longrightarrow & \mathbf{K} \\ x & \longmapsto & \det(xI_n - A) \end{vmatrix}$.

- 1. Montrer que χ_A est une fonction polynomiale, de degré n, dont on déterminera le coefficient dominant et le
- 2. En déduire que $\{\lambda \in \mathbf{K} \mid A \lambda I_n \text{ n'est pas inversible}\}$ est de cardinal au plus égal à n.
- 3. Soient $A, B \in \mathcal{M}_n(\mathbf{K})$.
 - (a) Montrer que $\begin{vmatrix} I_n & B \\ A & I_n \end{vmatrix} = \det(I_n AB) = \det(I_n BA)$.
 - (b) En déduire que $\chi_{AB} = \chi_{BA}$.

EXERCICE 32.29 Soient $a \neq b$ et $\lambda_1, \ldots, \lambda_n$ des scalaires. Pour $x \in K$, on pose

$$\Delta_n(x) = \begin{vmatrix} \lambda_1 + x & a + x & \dots & a + x \\ b + x & \lambda_2 + x & \ddots & \vdots \\ \vdots & \ddots & \ddots & a + x \\ b + x & \dots & b + x & \lambda_n + x \end{vmatrix}_{[n]}.$$

- 1. Montrer que Δ_n est une fonction affine de x.
- 2. Calculer $\Delta_n(x)$, et en déduire $\Delta_n(0)$.

▶ Comatrice

EXERCICE 32.30 Groupe spécial linéaire

On note $\mathcal{M}_n(\mathbf{Z})$ l'ensemble des matrices de $\mathcal{M}_n(\mathbf{R})$ dont tous les coefficients sont des entiers relatifs. On note de plus $SL_n(\mathbf{Z}) = \{A \in \mathcal{M}_n(\mathbf{Z}) \mid \det A = 1\}$. Prouver que $SL_n(\mathbf{Z})$ est un sous-groupe de $GL_n(\mathbf{R})$.

Exercice 32.31 Soient $A, B \in \mathcal{M}_n(\mathbb{C})$ qui commutent. On souhaite prouver que Com(A) et Com(B) commutent.

- 1. Prouver le résultat si *A* et *B* sont inversibles.
- 2. Prouver que $f: t \mapsto \det(A + tI_n)$ est une fonction polynomiale. En déduire que pour $p \in \mathbf{N}^*$ suffisamment grand, $A + \frac{1}{p}I_n$ et $B + \frac{1}{p}I_n$ sont inversibles.
- 3. Conclure en faisant tendre *p* vers l'infini.

AD

AD

AD

AD

D

EXERCICE 32.32 Rang et déterminant de la comatrice

AD

Soit
$$A \in \mathcal{M}_n(\mathbf{K})$$
. Prouver que $\operatorname{rg}(\operatorname{Com}(A)) = \begin{cases} n & \text{si } \operatorname{rg}(A) = n \\ 1 & \text{si } \operatorname{rg}(A) = n - 1 \\ 0 & \text{si } \operatorname{rg}(A) \leqslant n - 2 \end{cases}$