Devoir maison 19

▶ Problème : fonction Γ et théorème de Bohr-Mollerup

Partie I. Trois résultats préliminaires

- **1.** Prouver que pour tout $t \in \mathbb{R}_+$, $t t^2 \le \ln(1 + t) \le t$.
- 2. Pour $n \in \mathbf{N}^*$, on pose $u_n = \sum_{k=1}^n \frac{1}{k} \ln n$.
 - a. Justifier que pour tout $x \in [0, 1[, \ln(1-x) \le -x]]$
 - **b.** En déduire que $(u_n)_{n\geqslant 1}$ est décroissante.
 - c. En utilisant la monotonie de $t \mapsto \frac{1}{t}$ sur des intervalles de la forme [k, k+1], prouver que pour tout $n \ge 1$, $u_n \ge 0$.
 - d. En déduire que la suite (u_n) converge.
- 3. On pose à présent, pour $n \ge 1$, $v_n = \sum_{k=1}^n \frac{1}{k^2}$.
 - a. Prouver que $\lim_{n\to+\infty} \sum_{k=2}^{n} \frac{1}{(k-1)k} = 1$.
 - b. En déduire que $(v_n)_{n\geqslant 1}$ est majorée, puis qu'elle converge.

Partie II. Définition de la fonction Γ

Pour tout $n \in \mathbf{N}^*$ et tout $x \in \mathbf{R}_+^*$, on pose $\Pi_n(x) = \frac{n^x n!}{x(x+1)\cdots(x+n)}$.

- **4.** Croissance de $(\Pi_n(x))_{n\geqslant 1}$. Soit $x\in \mathbb{R}_+^*$.
 - a. À l'aide de l'inégalité de la question 2.a, prouver que pour tout $n \in \mathbb{N}^*$, $\ln\left(1+\frac{1}{n}\right) \geqslant \frac{1}{n+1}$.
 - **b.** En déduire que pour tout $n \in \mathbf{N}^*$, $\left(1 + \frac{1}{n}\right)^x \ge 1 + \frac{x}{n+1}$.
 - c. Prouver alors que la suite $(\Pi_n(x))_{n\geq 1}$ est croissante.
- **5.** Convergence de $(\Pi_n(x))_{n\geqslant 1}$. Soit $x\in \mathbf{R}_+^*$.
 - a. Pour tout $n \in \mathbf{N}^*$, exprimer $\ln (x\Pi_n(x))$ en fonction notamment de $\sum_{k=1}^n \ln \left(1 + \frac{x}{k}\right)$.
 - b. En déduire, grâce aux résultats de la partie I que la suite $(\ln(x\Pi_n(x)))_{n\geqslant 1}$ est majorée, puis que $(\Pi_n(x))_{n\geqslant 1}$ est majorée.

Par le théorème de la limite monotone, pour tout $x \in \mathbb{R}_+^*$, la suite $(\Pi_n(x))_{n \ge 1}$ converge.

On note alors $\Gamma(x) = \lim_{n \to +\infty} \Pi_n(x)$.

Ceci définit donc une fonction $\Gamma: \mathbf{R}_+^* \to \mathbf{R}$. Notons que puisque pour tout $x \in \mathbf{R}_+^*$, $(\Pi_n(x))_{n \geqslant 1}$ est croissante et à valeurs strictement positives, Γ est à valeurs dans \mathbf{R}_+^* .

Partie III. Premières propriétés de la fonction Γ

- **6.** Montrer que $\Gamma(1) = 1$.
- 7. Prouver que pour tout $x \in \mathbb{R}_+^*$, $\Gamma(x+1) = x\Gamma(x)$. En déduire que pour tout $n \in \mathbb{N}^*$, $\Gamma(n) = (n-1)!$
- 8. a. Pour tout $n \in \mathbb{N}^*$, justifier que la fonction $\ln \circ \Pi_n$ est deux fois dérivable sur \mathbb{R}_+^* , et qu'elle est convexe.
 - **b.** En déduire que la fonction $\ln \circ \Gamma$ est convexe sur \mathbb{R}_{+}^{*} .
- 9. Justifier que la fonction Γ est continue sur \mathbb{R}_{+}^{*} .

Partie IV. Le théorème de Bohr-Mollerup

Nous avons prouvé dans la partie précédente que la fonction Γ vérifie $\Gamma(1)=1, \forall x>0, \Gamma(x+1)=x\Gamma(x)$ et que ln $\circ\Gamma$ est convexe.

Dans cette partie, nous cherchons à prouver la réciproque : si $f: \mathbb{R}_+^* \to \mathbb{R}_+^*$ est une fonction telle que

- ► f(1) = 1
- \blacktriangleright $\forall x > 0, f(x+1) = xf(x)$
- ▶ $\ln \circ f$ est convexe.

alors $f = \Gamma$. Il s'agit du théorème de Bohr-Mollerup.

Dans toute la suite, on considère donc $f: \mathbb{R}_+^* \to \mathbb{R}_+^*$ qui satisfait les trois conditions ci-dessus.

10. Prouver que pour tout $n \in \mathbb{N}$, f(n+1) = n! et que pour tout x > 0 et tout $n \in \mathbb{N}^*$,

$$f(x+n) = f(x)x(x+1)\cdots(x+n-1).$$

- **11.** Prouver que : $\forall (u, v) \in (\mathbf{R}_{+}^{*})^{2}, \forall x \in [0, 1], f((1 x)u + xv) \leq f(u)^{1 x} f(v)^{x}$.
- 12. Soit $n \in \mathbb{N}^*$ et $x \in]0,1[$. En notant que x+n=(1-x)n+x(n+1), prouver que $f(x+n) \leq (n-1)!n^x$.
- 13. Pour $n \in \mathbb{N}^*$ et $x \in]0,1[$, calculer x(n+x) + (1-x)(n+1+x). En déduire que $n! \le (n+x)^{1-x} f(n+x)$.
- **14.** Prouver que pour tout $x \in]0,1[$ et tout $n \in \mathbb{N}^*, \frac{(n+x)^x n!}{x(x+1)\cdots(x+n)} \le f(x) \le \frac{n^x(n-1)!}{x(x+1)\cdots(x+n-1)}.$
- 15. En déduire le théorème de Bohr-Mollerup.

Correction du Devoir maison 19

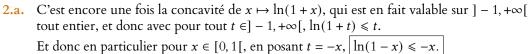
► Problème : fonction Γ et théorème de Bohr-Mollerup

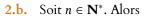
Partie I. Trois résultats préliminaires

L'inégalité ln(1+t) ≤ t relève du cours, et découle par exemple directement de la concavité de x → ln(1+x), dont la tangente en x = 1 a pour équation y = x.
 Pour la seconde inégalité, posons, pour tout t ∈ R₊, f(t) = ln(1+t) - t + t².
 Alors f est dérivable sur R₊, et pour tout t ∈ R₊,

$$f'(t) = \frac{1}{1+t} - 1 + 2t = \frac{1-1-t+2t+2t^2}{1+t} = \frac{2t^2+t}{t+1} \geqslant 0.$$

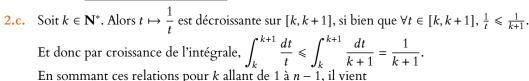
Donc f est croissante, et puisque f(0) = 0, $\forall t \in \mathbb{R}_+$, $f(t) \ge 0 \Leftrightarrow \boxed{t - t^2 \le \ln(1 + t)}$.





$$u_{n+1} - u_n = \frac{1}{n+1} - \ln(n+1) + \ln(n) = \frac{1}{n+1} + \ln\left(\frac{n}{n+1}\right) = \frac{1}{n+1} + \ln\left(1 - \frac{1}{n+1}\right) \le 0.$$

Et donc $(u_n)_{n\geqslant 1}$ est décroissante.



$$\sum_{k=1}^{n-1} \int_{k}^{k+1} \frac{dt}{t} \le \sum_{k=1}^{n-1} \frac{1}{k+1}.$$

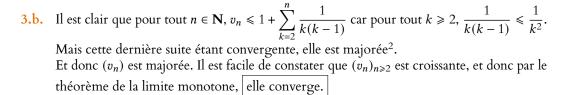
Mais par Chasles, $\sum_{k=1}^{n-1} \int_k^{k+1} \frac{dt}{n} = \int_1^n \frac{dt}{t} = \ln(n)$. Et donc

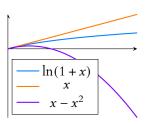
$$\ln(n) \le \sum_{k=1}^{n-1} \frac{1}{k+1} \Leftrightarrow \sum_{k=2}^{n} \frac{1}{k} - \ln(n) \ge 0.$$

En ajoutant 1, il vient donc $u_n \ge 1 \ge 0$.

- 2.d. La suite (u_n) étant décroissante et minorée¹, par le théorème de la limite monotone, elle converge.
- 3.a. C'est un classique : une décomposition en éléments simples nous donne, pour tout $k \ge 2$, $\frac{1}{(k-1)k} = \frac{1}{k-1} \frac{1}{k}$, si bien que pour $n \ge 2$,

$$\sum_{k=2}^{n} \frac{1}{k(k-1)} = \sum_{k=2}^{n} \left(\frac{1}{k-1} - \frac{1}{k} \right) = 1 - \frac{1}{n} \xrightarrow[n \to +\infty]{} 1.$$





Détails

L'inégalité provient directement de la question précédente.

¹ Par 0.

² Mieux : elle est croissante et convergente, donc majorée par sa limite.

Partie II. Définition de la fonction I

- **4.** Croissance de $(\Pi_n(x))_{n\geq 1}$.
- **4.a.** Soit $n \in \mathbb{N}^*$. Alors

$$\ln\left(1+\frac{1}{n}\right) = \ln\left(\frac{n+1}{n}\right) = -\ln\left(\frac{n}{n+1}\right) = -\ln\left(1-\frac{1}{n+1}\right) \geqslant \frac{1}{n+1}.$$

4.b. Soit $n \in \mathbb{N}^*$. On a alors $\left(1 + \frac{1}{n}\right)^x = e^{x \ln\left(1 + \frac{1}{n}\right)} \ge 1 + x \ln\left(1 + \frac{1}{n}\right)$.

Et donc à l'aide de l'inégalité précédente, on en déduit donc que $\left[\left(1+\frac{1}{n}\right)^x\geqslant 1+\frac{x}{n+1}\right]$.

4.c. Soit $n \in \mathbb{N}^*$. On a alors

$$\frac{\Pi_{n+1}(x)}{\Pi_n(x)} = \frac{(n+1)^x(n+1)!}{x(x+1)\cdots(x+n+1)} \frac{x(x+1)\cdots(x+n)}{n^x n!} = \left(\frac{n+1}{n}\right)^x \frac{n+1}{x+n+1} = \left(1+\frac{1}{n}\right)^x \frac{1}{1+\frac{x}{n+1}}.$$

Mais par la question précédente, on a donc $\frac{\Pi_{n+1}(x)}{\Pi_n(x)} \ge 1$ et donc $\boxed{(\Pi_n(x))_{n \ge 1}}$ est croissante.

- 5. Convergence de $(\Pi_n(x))_{n\geq 1}$
- **5.a.** Soit $n \in \mathbb{N}^*$. Alors

$$\ln(\Pi_n(x)) = \ln(n^x) + \ln(n!) - \ln(x(x+1)\cdots(x+n)) = x\ln(n) + \ln(n!) - \sum_{k=0}^n \ln(x+k).$$

Or $\ln(n!) = \ln(1 \times 2 \times \dots \times n) = \sum_{k=1}^{n} \ln(k)$, et donc en ajoutant³ $\ln(x)$

$$\ln(x\Pi_n(x)) = x \ln(n) - \sum_{k=1}^n \left(\ln(x+k) - \ln(k) \right) = x \ln(n) - \sum_{k=1}^n \ln\left(1 + \frac{x}{k}\right).$$

5.b. Commençons par noter que par la question 1,

$$\sum_{k=1}^{n} \ln\left(1 + \frac{x}{k}\right) \geqslant \left(\sum_{k=1}^{n} \frac{x}{k} - \frac{x^2}{k^2}\right).$$

Et donc

$$\ln(x\Pi_n(x)) \le x \left(\ln(n) - \sum_{k=1}^n \frac{1}{k}\right) + x^2 \sum_{k=1}^n \frac{1}{k^2} \le -xu_n + x^2 v_n.$$

Mais les deux suites (u_n) et (v_n) étant convergentes, elles sont bornées, si bien qu'il existe $M \in \mathbf{R}$ tel que $\forall n \in \mathbf{N}^*$, $\ln(x\Pi_n(x)) \leq M$.

Et donc $\Pi_n(x) \leq \frac{e^M}{x}$, qui est bien une constante indépendante de n.

Donc la suite $(\Pi_n(x))_{n\geqslant 1}$ est majorée.

Partie III. Premières propriétés de la fonction Γ

6. Pour tout $n \in \mathbb{N}^*$, on a

$$\Pi_n(1) = \frac{n^1 \cdot n!}{1 \cdot 2 \cdots (n+1)} = \frac{n}{n+1} \xrightarrow[n \to +\infty]{} 1.$$

Et donc $\Gamma(1) = 1$.

7. Soit $x \in \mathbb{R}_+^*$ et $n \in \mathbb{N}^*$. Alors

$$\Pi_n(x+1) = \frac{n^{x+1}n!}{(x+1)(x+2)\cdots(x+n+1)} = \frac{nx}{x+n+1}\Pi_n(x).$$

Mais
$$\frac{nx}{x+n+1}$$
 $\underset{n\to+\infty}{\sim}$ $\frac{nx}{n}=x$, si bien que

$$\Gamma(x+1) = \lim_{n \to +\infty} \Pi_n(x+1) = x \lim_{n \to +\infty} \Pi_n(x) = x \Gamma(x).$$

On a alors $\Gamma(2) = 1\Gamma(1) = 1 = (2-1)!$, puis $\Gamma(3) = \Gamma(2+1) = 2\Gamma(2) = 2!$, et une récurrence facile prouve que pour tout $n \in \mathbf{N}^*$, $\Gamma(n) = (n-1)!$

Rappel

C'est une inégalité de convexité classique : $e^x \ge 1 + x$.

Remarque

Il est clair que $\Pi_n(x) > 0$, donc il est légitime de s'intéresser au quotient pour étudier la monotonie de la suite.

³ Ce qui supprime le terme en k = 0 dans la somme.

8.a. Soit $n \in \mathbb{N}^*$. Alors, comme calculé précédemment, pour tout $x \in \mathbb{R}_+^*$,

$$\ln(\Pi_n(x)) = x \ln(n) + \ln(n!) - \sum_{k=0}^n \ln(x+k).$$

Donc $\ln \circ \Pi_n$ est deux fois dérivable, car somme de fonctions qui le sont. Et alors pour tout $x \in \mathbb{R}_+^*$,

$$[\ln \circ \Pi_n]'(x) = \ln(n) - \sum_{k=0}^n \frac{1}{x+k}, [\ln \circ \Pi_n]''(x) = \sum_{k=0}^n \frac{1}{(x+k)^2} \geqslant 0.$$

Et donc $\ln \circ \Pi_n$ est convexe sur \mathbb{R}_+^* .

8.b. Soient x, y > 0 et soit $\lambda \in [0, 1]$. Alors pour tout $n \in \mathbb{N}^*$, par convexité de $\log \circ \Pi_n$,

$$\ln(\Pi_n((1-\lambda)x+\lambda y)) \leq (1-\lambda)\ln(\Pi_n(x)) + \lambda \ln(\Pi_n(y)).$$

Par passage à la limite lorsque $n \to +\infty$, il vient donc

$$\ln(\Gamma((1-\lambda)x + \lambda y)) \le (1-\lambda)\ln(\Gamma(x)) + \lambda\ln(\Gamma(y))$$

si bien que la fonction $\ln \circ \Gamma$ est convexe sur \mathbf{R}_{+}^{*} .

Puisque ln ∘Γ est convexe sur l'intervalle ouvert R^{*}₊, elle y est continue.
 Et donc par composition avec l'exponentielle, Γ elle même est continue sur R^{*}₊.

Partie IV. Le théorème de Bohr-Mollerup

10. La preuve de f(n+1) = n! se fait facilement par récurrence comme pour la fonction Γ à l'aide de f(1) = 1 et f(x+1) = xf(x).

Soit x > 0. Prouvons par récurrence sur $n \in \mathbb{N}^*$ que $f(x+n) = f(x)x(x+1)\cdots(x+n-1)$. Pour n = 1, on a f(x+1) = xf(x) par hypothèse.

Et si $f(x+n) = f(x)x(x+1)\cdots(x+n-1)$, alors

$$f(x+n+1) = (x+n)f(x+n) = f(x)x(x+1)\cdots(x+n+1)(x+n).$$

Par le principe de récurrence, pour tout $n \in \mathbb{N}^*$, $f(x+n) = f(x)x(x+1)\cdots(x+n-1)$.

11. Soient $u, v \in \mathbb{R}_+^*$, et soit $x \in [0, 1]$. Alors

$$\ln\left[f\big((1-x)u+xv\big)\right)\leqslant (1-x)\ln(f(u))+x\ln(f(v)).$$

Par croissance de l'exponentielle, on a donc

$$f((1-x)u+xv) \le e^{(1-x)\ln(f(u))+x\ln(f(v))} = f(u)^{1-x}f(v)^{x}.$$

12. L'inégalité de la question précédente nous donne donc $f(x+n) \le f(n)^{1-x} f(n+1)^x$. Or

$$f(n)^{1-x}f(n+1)^x = ((n-1)!)^{1-x}(n!)^x = (n-1)!\left(\frac{n!}{(n-1)!}\right)^x = \boxed{(n-1)!n^x}.$$

13. On a $x(n+x) + (1-x)(n+1+x) = nx + x^2 + n + 1 + x - xn - x - x^2 = n + 1$ et donc toujours par la question 10,

$$\begin{split} f(n+1) & \leq f(n+1+x)^{1-x} f(n+x)^x \leq f(n+1+x) \left[\frac{f(n+x)}{f(n+1+x)} \right]^x \\ & \leq f(n+1+x) \left[\frac{1}{n+x} \right]^x \leq (n+x) f(n+x) \frac{1}{(n+x)^x} \leq (n+x)^{1-x} f(n+x). \end{split}$$

Puisque f(n+1) = n!, il vient bien $n!(n+x)^{x-1} \le f(n+x)$.

Remarque

On prouverait facilement que ceci implique que Γ ellemême est convexe. 4 Devoir maison 19

14. On a donc, pour x > 0 et $n \ge 1$,

$$f(x) = \frac{f(x+n)}{x(x+1)\cdots(x+n-1)} \ge \frac{n!}{(n+x)^{1-x}} \frac{1}{x(x+1)\cdots(x+n)} \ge \frac{n!(n+x)^{x-1}}{x(x+1)\cdots(x+n)}.$$

Et de même, en utilisant $f(x) = \frac{f(x+n)}{x(x+1)\cdots(x+n-1)}$ et l'inégalité de la question 11, on obtient tout de suite $f(x) \le \frac{n^x(n-1)!}{x(x+1)\cdots(x+n-1)}$.

15. On a donc prouvé que si $x \in]0,1[$, alors $\left(\frac{n+x}{n}\right)^x \Pi_n(x) \leqslant f(x) \leqslant \Pi_n(x) \frac{x+n}{n}$.

Mais puisque $\frac{x+n}{n} \underset{n \to +\infty}{\longrightarrow} 1$, et que $\left(\frac{n+x}{n}\right)^x = \left(1+\frac{x}{n}\right)^x \underset{n \to +\infty}{\longrightarrow} 1$, alors par le théorème des gendarmes, $f(x) = \lim_{n \to +\infty} \Pi_n(x) = \Gamma(x)$.

Pour x = 1, on a encore bien $f(x) = \Gamma(x)$. Et plus généralement, pour x entier, il n'y a pas de soucis.

Et pour x > 1 non entier, si on note $n = \lfloor x \rfloor$, et $y = x - \lfloor x \rfloor \in [0, 1[$ la partie fractionnaire de x, alors

$$f(x) = f(n+y) = y(y+1) \cdots (y+n-1)f(y) = y(y+1) \cdots (y+n-1)\Gamma(y) = \Gamma(y+n) = \Gamma(x).$$

Ceci achève donc la preuve du théorème de Bohr-Mollerup.

Commentaires : le Bohr du théorème est Harald Bohr, mathématicien danois, c'est le petit frère du physicien Niels Bohr, lauréat du prix Nobel.

Il a aussi la particularité d'être médaillé olympique⁴, ce qui est plutôt rare (mais pas unique) chez les mathématiciens.

⁴En football aux Jeux de